Mutations in DNA replication genes reduce yeast life span.

نویسندگان

  • Laura L Mays Hoopes
  • Martin Budd
  • Wonchae Choe
  • Tao Weitao
  • Judith L Campbell
چکیده

Surprisingly, the contribution of defects in DNA replication to the determination of yeast life span has never been directly investigated. We show that a replicative yeast helicase/nuclease, encoded by DNA2 and a member of the same helicase subfamily as the RecQ helicases, is required for normal life span. All of the phenotypes of old wild-type cells, for example, extended cell cycle time, age-related transcriptional silencing defects, and nucleolar reorganization, occur after fewer generations in dna2 mutants than in the wild type. In addition, the life span of dna2 mutants is extended by expression of an additional copy of SIR2 or by deletion of FOB1, which also increase wild-type life span. The ribosomal DNA locus and the nucleolus seem to be particularly sensitive to defects in dna2 mutants, although in dna2 mutants extrachromosomal ribosomal circles do not accumulate during the aging of a mother cell. Several other replication mutations, such as rad27 Delta, encoding the FEN-1 nuclease involved in several aspects of genomic stability, also show premature aging. We propose that replication fork failure due to spontaneous, endogenous DNA damage and attendant genomic instability may contribute to replicative senescence. This may imply that the genomic instability, segmental premature aging symptoms, and cancer predisposition associated with the human RecQ helicase diseases, such as Werner, Bloom, and Rothmund-Thomson syndromes, are also related to replicative stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The transcriptome of prematurely aging yeast cells is similar to that of telomerase-deficient cells.

To help define the pathologies associated with yeast cells as they age, we analyzed the transcriptome of young and old cells isolated by elutriation, which allows isolation of biochemical quantities of old cells much further advanced in their life span than old cells prepared by the biotin-streptavidin method. Both 18-generation-old wild-type yeast and 8-generation-old cells from a prematurely ...

متن کامل

Sir2 Blocks Extreme Life-Span Extension

Sir2 is a conserved deacetylase that modulates life span in yeast, worms, and flies and stress response in mammals. In yeast, Sir2 is required for maintaining replicative life span, and increasing Sir2 dosage can delay replicative aging. We address the role of Sir2 in regulating chronological life span in yeast. Lack of Sir2 along with calorie restriction and/or mutations in the yeast AKT homol...

متن کامل

Studying Age-dependent Genomic Instability using the S. cerevisiae Chronological Lifespan Model

Studies using the Saccharomyces cerevisiae aging model have uncovered life span regulatory pathways that are partially conserved in higher eukaryotes. The simplicity and power of the yeast aging model can also be explored to study DNA damage and genome maintenance as well as their contributions to diseases during aging. Here, we describe a system to study age-dependent DNA mutations, including ...

متن کامل

Defective replication initiation results in locus specific chromosome breakage and a ribosomal RNA deficiency in yeast

A form of dwarfism known as Meier-Gorlin syndrome (MGS) is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5). These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS ...

متن کامل

C. elegans clk-2, a gene that limits life span, encodes a telomere length regulator similar to yeast telomere binding protein Tel2p

An important quest in modern biology is to identify genes involved in aging. Model organisms such as the nematode Caenorhabditis elegans are particularly useful in this regard. The C. elegans genome has been sequenced [1], and single gene mutations that extend adult life span have been identified [2]. Among these longevity-controlling loci are four apparently unrelated genes that belong to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 22 12  شماره 

صفحات  -

تاریخ انتشار 2002